Revised Gmdh-type Neural Network Algorithm with a Feedback Loop Identifying Sigmoid Function Neural Network

نویسندگان

  • Tadashi Kondo
  • Junji Ueno
  • J. UENO
چکیده

In this paper, a revised Group Method of Data Handling (GMDH)-type neural network algorithm with a feedback loop identifying sigmoid function neural network is proposed. In this algorithm, the optimum sigmoid function neural network architecture is automatically organized so as to minimize the prediction error criterion defined as Akaike’s Information Criterion (AIC) or Prediction Sum of Squares (PSS) by using the heuristic self-organization. The structural parameters such as the number of neurons in each layer, the number of feedback loops and the useful input variables are automatically determined using AIC or PSS criterion. Therefore, it is easy to apply this algorithm to the identification problem of the complex nonlinear system and to obtain a good prediction results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feedback Gmdh-type Neural Network and Its Application to Medical Image Analysis of Liver Cancer

A feedback Group Method of Data Handling (GMDH)-type neural network algorithm is proposed, and is applied to nonlinear system identification and medical image analysis of liver cancer. In this feedback GMDH-type neural network algorithm, the optimum neural network architecture is automatically selected from three types of neural network architectures, such as sigmoid function neural network, ra...

متن کامل

GMDH: An R Package for Short Term Forecasting via GMDH-Type Neural Network Algorithms

Group Method of Data Handling (GMDH)-type neural network algorithms are the heuristic self organization method for the modelling of complex systems. GMDH algorithms are utilized for a variety of purposes, examples include identification of physical laws, the extrapolation of physical fields, pattern recognition, clustering, the approximation of multidimensional processes, forecasting without mo...

متن کامل

Performance evaluation of chain saw machines for dimensional stones using feasibility of neural network models

Prediction of the production rate of the cutting dimensional stone process is crucial, especially when chain saw machines are used. The cutting dimensional rock process is generally a complex issue with numerous effective factors including variable and unreliable conditions of the rocks and cutting machines. The Group Method of Data Handling (GMDH) type of neural network and Radial Basis Functi...

متن کامل

Utilizing a new feed-back fuzzy neural network for solving a system of fuzzy equations

This paper intends to offer a new iterative method based on articial neural networks for finding solution of a fuzzy equations system. Our proposed fuzzied neural network is a ve-layer feedback neural network that corresponding connection weights to output layer are fuzzy numbers. This architecture of articial neural networks, can get a real input vector and calculates its corresponding fuzzy o...

متن کامل

Applying Pareto Design of GMDH-Type Neural Network for Solid-Liquid Equilibrium of Binary Systems (Isotactic Poly 1-Butene (1)-Organic Solvents (2))

Isotactic poly (1-butene), ipbu-1, was synthesized by using a metallocene catalyst. The thermodynamic phase behavior of polymer–organic solvents systems is very important in every polymer application.  In this paper, the solid–liquid equilibrium of ipbu-1 with different organic solvents (1-heptyne, cyclo octane) was studied by a mathematical model. By considering the experiments temperature...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005